People
REN Wei 任偉
Assistant Professor
TEL: 852 - 3943 9486
Room 305, William M.W. Mong Engineering Building

Dr. Wei Ren received his B.S. and M.S. degree from Tsinghua University in 2006 and 2008, respectively. He received his Ph.D. degree in Mechanical Engineering under the advisory of Dr. Ronald K. Hanson at Stanford University in 2013. After one year of postdoctoral research with Dr. Frank K. Tittel in the Department of Electrical and Computer Engineering at Rice University, Dr. Ren joined CUHK as an assistant professor in the Department of Mechanical and Automation Engineering starting in August, 2014. His current research focuses on the development of new technologies and the understanding of basic principles in the areas of combustion and propulsion, alternative fuels, laser diagnostics and gas sensing.

Research Interests
  • Laser diagnostics
  • Sensors and actuators
  • Chemical sensing
  • Combustion and propulsion
Current Projects
  • Mid-infrared photoacoustic and photothermal spectroscopy
  • Combustion diagnostics using frequency comb spectroscopy
  • Chemical kinetics of oxygenated and fossil fuels
Teaching by Years
2019-20
MAEG4080 Introduction to Combustion
MAEG3030 Fluid Mechanics
GENA1113 Student-oriented Teaching and Seminar
2018-19
EEEN2020 Renewable Energy Technologies
MAEG4080 Introduction to Combustion
MAEG3030 Fluid Mechanics
2017-18
MAEG2020 Engineering Mechanics
MAEG4080 Introduction to Combustion
2016-17
MAEG2020 Engineering Mechanics
MAEG4080 Introduction to Combustion
2015-16
MAEG4080 Introduction to Combustion
ENER2020 Renewable Energy Technologies
2014-15
MAEG3100 Energy Systems
ENER2020 Renewable Energy Technologies
Publications

Journal 

  1. “Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 µm”, C. Yao, L. Xiao, S. Gao, Y. Wang, P. Wang, R. Kan, W. Jin, and W. Ren*, Sensors and Actuators B, 305, 127238 (2020). (link)
  2. “Exploring the pyrolysis chemistry of prototype aromatic ester phenyl formate: Reaction pathways, thermodynamics and kinetics”, H. Ning, J. Wu, L. Ma, and W. Ren*, Combustion and Flame, 211, 337-346 (2020). (link)
  3. “An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation”, L. Ma, K.-P. Cheong, H. Ning, and W. Ren*, Experimental Thermal and Fluid Science, 112, 110013 (2020). (link)
  4. “Multipass-assisted dual-comb gas sensor for multi-species detection using a free-running fiber laser”, K. Xu, X. Zhao, Z. Wang, J. Chen, T. Li, Z. Zheng*, and W. Ren*, Applied Physics B, 126, 39 (2020). (link)
  5. “Anharmonic kinetics of the cyclopentane reaction with hydroxyl radical”, J. Wu, L. Gao, W. Ren*, D. Truhlar*, Chemical Science – The Royal Society of Chemistry, 11, 2511-2523 (2020). (link)
  6. “Active modulation of intracavity laser intensity with Pound-Drever-Hall locking for photoacoustic spectroscopy”, Z. Wang, H. W, Y. Li, R. Kan, and W. Ren*, Optics Letters, 45(5), 1148-1151 (2020). (link)
  7. “Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-Tricyclodecane (the main component of Jet Propellant-10)”, J. Wu, L. G. Gao, H. Ning, W. Ren*, and D. G. Truhlar*, Combustion and Flame, 216, 82-91 (2020). (link)
  8. “Water catalysis of the reaction of methanol with OH radical in the atmosphere is negligible”, J. Wu, L. G. Gao, Z. Varga, X. Xu*, W. Ren*, and D. G. Truhlar*, Angewandte Chemie, accepted (2020).
  9. “Shock tube measurement of NO time-histories in nitromethane pyrolysis using a quantum cascade laser at 5.26 μm”, Y. Shang, Z. Wang, L. Ma, J. Shi, H. Ning*, W. Ren*, and S. Luo, Proceedings of the Combustion Institute, accepted for oral presentation.
  10. “Rapid field measurement of ventilation rate using a quartz-enhanced photoacoustic SF6 gas sensor”, Z. Wang#, M. Yang#, L. Fu, C. Chen, R. You*, and W. Ren*, Measurement Science and Technology, accepted.
  11. “Cascaded group-additivity ONIOM: A new method to approach CCSD(T)/CBS energies of large aliphatic hydrocarbons”, J. Wu, H. Ning, L. Ma, P. Zhang, and W. Ren*, Combustion and Flame, 201, 31-43 (2019). (link)
  12. “Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements”, L. Ma, Z. Wang, K.-P. Cheong, H. Ning, and W. Ren*, Proceedings of the Combustion Institute, 37(2), 1329-1336 (2019). (link)
  13. “Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace”, K.-P. Cheong, G. Wang, B. Wang, R. Zhu, W. Ren, J. Mi*, Energy, 170, 1181-1190 (2019). (link)
  14. “TDLAS Monitoring of Carbon Dioxide with Temperature Compensation in Power Plant Exhausts”, X. Zhu, S. Yao*, W. Ren, Z. Lu, and Z. Li, Applied Sciences, 9(3), 442 (2019). (link)
  15. “Ultra-sensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking”, Z. Wang, Q. Wang, W. Zhang, H. Wei, Y. Li, and W. Ren*, Optics Letters, 44(8), 1924-1927 (2019). (link)
  16. “Accurate entropy calculation for large flexible hydrocarbons using a multi-structural 2-dimensional torsion method”, J. Wu, H. Ning, X. Xu, and W. Ren*, Physical Chemistry Chemical Physics, 21, 10003-10010 (2019). (link)
  17. “Kinetic mechanism for modeling the temperature effect on PAH formation in the pyrolysis of acetylene”, H. Tao, H.-Y. Wang, W. Ren, and K. C. Lin*, Fuel, 255, 115796 (2019). (link)
  18. “Photothermal CO detection in a hollow-core negative curvature fiber”, C. Yao, Q. Wang, Y. Lin, W. Jin, L. Xiao, S. Gao, Y. Wang, P. Wang, and W. Ren*, Optics Letters, 44(16), 4048-4051 (2019). (link)
  19. “Time-resolved characterization of non-thermal plasma-assisted photocatalytic removal of nitric oxide”, M. Yang, K. Liu, L. Ma, K.-P. Cheong, Z. Wang, W. Ho, and W. Ren*, Journal of Physics D: Applied Physics, 53(1), 01LT02 (2019). (link)
  20. “Characterization of temperature and soot volume fraction in laminar premixed flames: laser absorption/extinction measurement and 2D CFD modeling”, L. Ma, H. Ning, J. Wu, K.-P. Cheong, and W. Ren*, Energy & Fuels, 32(12), 12962-12970 (2018). (link)
  21. “Influence of line pair selection on flame tomography using infrared absorption spectroscopy”, K.-P. Cheong, L. Ma, Z. Wang, and W. Ren*, Applied Spectroscopy, 73(5), 529-539 (2018). (link)
  22. “Pressure-dependent kinetics of methyl formate reaction with OH at combustion, atmospheric and interstellar temperatures”, J. Wu, H. Ning, L. Ma, and W. Ren*, Physical Chemistry Chemical Physics, 20(41), 26190-26199 (2018). (link) (2018 PCCP HOT Articles)
  23. “Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane”, C. Yao, Z. Wang, Q. Wang, Y. Bian, C. Chen, L. Zhang, and W. Ren*, Applied Optics, 57(27), 8005-8010 (2018). (link)
  24. (Invited review) “Recent Advances of Power-Enhanced Photoacoustic Spectroscopy for Gas Sensing”, Q. Wang, K. Xu, C. Yao, Z. Wang, J. Chang, and W. Ren*, 中国激光, 45(9), 911008 (2018). (link)
  25. “Premixed MILD Combustion of Propane in a Cylindrical Furnace with a Single Jet Burner: Combustion and Emission Characteristics”, KP Cheong, G Wang, J Mi, B Wang, R Zhu, W Ren, Energy & Fuels, 32 (8), 8817–8829 (2018). (link)
  26. “Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy”, N. Liu, S. Zhou, L. Zhang, B. Yu, H. Fischer, W. Ren, J. Li,  Laser Physics Letters, 15 (2018). (link)
  27. “Metal-Organic Framework-Based Nanofiber Filters for Effective Indoor Air Quality Control”, Y. Bian, R. Wang, S. Wang, C. Yao, W. Ren, C. Chen, L. Zhang, Journal of Materials Chemistry A, 6, 15807-15814 (2018). (link)
  28. “A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate”, H. Ning, D. Liu, J. Wu, L. Ma, W. Ren*, and A. Farooq, Physical Chemistry Chemical Physics, 20, 21280-21285 (2018). (link)
  29. “Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy”, L. Ma, Z. Wang, K.-P. Cheong, H. Ning, and W. Ren*, Applied Physics B: Lasers and Optics, 124:117 (2018). (link)
  30. “Fiber-ring laser intracavity QEPAS gas sensor using a 7.2 kHz quartz tuning fork”, Q. Wang, Z. Wang, W. Ren*, P. Patimisco, A. Sampaolo, and V. Spagnolo, Sensors and Actuators B: Chemical, 268, 512-518 (2018).​ (link)
  31. “Accurate Prediction of Bond Dissociation Energies of Large n-Alkanes Using ONIOM-CCSD(T)/CBS Methods”, J. Wu, H. Ning, L. Ma, W. Ren*, Chemical Physics Letters, 699, 139-145 (2018). (link)​
  32. “In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry”, L. Ma, H. Ning, J. Wu, and W. Ren*, Combustion Science and Technology, 190(3), 392-407 (2018). (link)
  33. “A Mid-infrared Fiber-coupled QEPAS Nitric Oxide Sensor for Real-time Engine Exhaust Monitoring”, C. Shi, D. Wang, Z. Wang, L. Ma, Q. Wang, K. Xu, S.-C. Chen, and W. Ren*, IEEE Sensors Journal, 17(22), 7418-7424 (2017). (link)
  34. “Mid-infrared fiber-optic photothermal interferometry”, Z. Li, Z. Wang, F. Yang, W. Jin, and W. Ren*, Optics Letters, 42(18), 3718-3721 (2017). (link)
  35. “Theoretical and experimental investigation of fiber-ring laser intracavity photoacoustic spectroscopy (FLI-PAS) for acetylene detection”, Q. Wang, Z. Wang, and W. Ren*, Journal of Lightwave Technology, 35(20), 4519-4525 (2017). (link)
  36. “Combined Ab Initio, Kinetic Modeling and Shock Tube Study of the Thermal Decomposition of Ethyl Formate”, H. Ning, J. Wu, L. Ma, W. Ren*, D. F. Davidson, and R. K. Hanson, The Journal of Physical Chemistry A, 121(35), 6568-6579 (2017). (link)
  37. “Theoretical and Shock Tube Study of the Rate Constants for Hydrogen Abstraction Reactions of Ethyl Formate”, J. Wu, F. Khaled, H. Ning, L. Ma, A. Farooq, and W. Ren*, The Journal of Physical Chemistry A, 121(33), 6304-6313 (2017). (link)
  38. “Chemical kinetic modeling and shock tube study of methyl propanoate decomposition”, H. Ning, J. Wu, L. Ma, W. Ren*, D. F. Davidson, and R. K. Hanson, Combustion and Flame, 184, 30-40 (2017). (link)
  39. “Mercury Telluride Quantum Dot Based Phototransistor Enabling High Sensitivity Room Temperature Photodetection at 2000 Nanometers”, M. Chen, H. Lu, N.M. Abdelazim, Y. Zhu, Z. Wang, W. Ren, S.V. Kershaw*, A.L. Rogach, and N. Zhao*, ACS Nano, 11(6), 5614-5622 (2017). (link)
  40. “Fiber ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing”, Q. Wang, Z. Wang, J. Chang, and W. Ren*, Optics Letters, 42(11), 2114-2117 (2017). (link)
  41. “Wavelength-stabilization-based photoacoustic spectroscopy for methane detection”, Q. Wang, Z. Wang, and W. Ren*, Measurement Science and Technology, 28(6), (2017). (link)
  42. “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper”, Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren*, Sensors and Actuators B: Chemical, 248, 1023-1028 (2017). (link)
  43. “A portable low-power QEPAS-based CO2 isotope sensor using a fiber-coupled interband cascade laser”, Z. Wang, Q. Wang, J. Y.-L. Ching, J. C.-Y. Wu, G. Zhang, and W. Ren*, Sensors and Actuators B: Chemical, 246, 710-715 (2017). (link)
  44. “Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy”, L. Ma, L. Y. Lau, and W. Ren*, Applied Physics B: Lasers and Optics, 123:83 (2017). (link)
  45. “Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) detection of the v7 band of ethylene at low pressure with CO2 interference analysis”, Z. Wang, J. Geng, and W. Ren*, Applied Spectroscopy, 71(8), 1834-1841 (2017). (link)
  46. “Pyrolysis and oxidation of methyl acetate in a shock tube: a multi-species time-history study”, W. Ren*, K.-Y. Lam, D. F. Davidson, R. K. Hanson, and X. Yang, Proceedings of the Combustion Institute, 36(1), 255-264 (2017). (link)
  47. “Mid-infrared multimode fiber coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection”, Z. Li, C. Shi, and W. Ren*, Optics Letters, 41 (17), 4095-4098 (2016). (link)
  48. “Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection”, Z. Li, Z. Wang, C. Wang, and W. Ren*, Applied Physics B: Lasers and Optics, 122 (2016). (link)
  49. “Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser”, Z. Wang, Z. Li, and W. Ren*, Optics Express, 24, 4143-4154 (2016). (link)
  50. “Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm”, W. Ren*, L. Luo, F. K. Tittel, Sensors and Actuators B: Chemical, 221, 1062-1068 (2015). (link)