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Topology Optimization

Architecture Design
http://www.xieym.com/

v' find the optimal layout of a structure
within a given region under a set of
loads, boundary conditions and
constraints

v" Widely applied in conceptual design

v' Manufacturability — Additive
manufacturing

v" Undamped/ Viscously damped

3D Printing Auxetic Structures
Struct. Multidisc. Optim 2018, 57(6): 2457—2483.



Viscoelastic Materials

Science, 2010, 330,1364-1368.

INT J SOLIDS STRUCT, 2013, 50(14-15): 2416-2423.

v" both elasticity and
viscosity

v" Wider range of
frequency and
temperature

Non-viscous

Damping
Def : not proportional to the
instantaneous velocity

Convolution integral form:
t .
f,®)=—] gtt-r)x(z)dz

Most general damping model within
the scope of linear system 4



Motivations

Struct. Multidisc. Optim 2016, 53(1): 101-114. @

Fi

12 ‘ Initialization ‘

F>
T « DOF:60 X 30
 Undamped
100 steps
Newmark method
65.4 X 311 = 20336 s
lteration 5.64 h

v" Increased dimensions
v' Complex modes

!

0 Efficient TO framework

:

v' Time integration method
v" TO method/ optimization algorithm
v' Computational considerations




Difficulties

High Efficient Topology Optimization Algorithm

of Viscoelastically Damped Structures
Under Time-Dependent Loadings

l l l

Viscoelastic Time-dependent Computational
Materials Loadings Costs
Challenge 1 Challenge 2 Challenge 3

Generalized Discretize-then- Model Order

Damping Model Differentiate Method Reduction




Challenge 1

Transient responses for viscoelastic systems

* Generality
« Accuracy and efficiency

Mathematical representations of some non-viscous damping models.

Non-viscous damping models Kernel functions
Biot model G(s) = >k1 75 Ck
Exponential damping model G(s) = k1 _%f;ck

Golla-Hughes-McTavish (GHM) model , 2198 s
SG(s) =G |1+ F:Eﬂxk%g k

Anelastic Displacement Field (ADF) model G(s) =1, 2 C

<k=15TA,; k
Fractional derivative model G(s) = E]s;:i,bsﬁqo co 1)

Step-function model G(s) =clg™C
0
Half cosine model oy _ ¢ 142(sto/m)—e~%0
G(S) T sty I—Z?STQ_.I'R}E C
Gaussian model o) — ~pS? /4 Y

G(s) = ce™ “[1 - erf(szﬁ)_c

How to develop a general and easy-to-solve mathematical expression
to make the method applicable to the majority of existing damping models ?




Methodology

» Generalized Damping Model (GDM)
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v Mathematically expressed by a fraction formula

v" Introduce a unified way to express the frequently-used viscous/non-viscous damping models.

» Modified Precise Integration Method (MPIM)
Equation of motion:
M (t) + C x(t) + Zn:ck j; g, (t— 7)x(r)d 7 + Kx(t) = £ (t)
State-space forr;_lilation: 0 I, 0

z(t) = Az(t) +r(t), where A=|-M'K -M'C, -M'L
0 -W'R'" W'E

Z. Ding, et al., Mech. Syst. Signal Pr. 2019, 121: 322-342.



g [ Governing equanon of non-viscously damped systems
I Mi(r) + ‘:T C, [ e~ x(n)dr + Kx(t) = £(1)
|

r-l

@ Y

» Computational Considerations

| Transform governing equation into state-space formulation |

Biz(r)=Az(r)+r()
® i1

I Define a response function: ¥ = L Flz.z.p.t)de I

@ ¥

‘ Augmented functions ‘

* Accuracy

« Consistency

@

* Implementation effort

Dhiscretization

I"l[z L Egs Z,' I -0y 1 v =t [ AT (Bl — Az(r) —ris) ) dr

« Computational complexity

Auumented ﬁmchon'; Di fferentiation
> Factors z, —I —?.F R d;'-_|"“£d_r_,'";.\-"Ei_ﬁz_a_r-'d;
do = &p - & ip ip |

y

Solve adjoint equations
(termuinal value problem)

e time integration method

ZR R
z, =z, —“_.k —+‘>— “5_'
=] 1..

=0 -|

* time step size

(prime problem)

based on MPIM

L

Solve adjoint equations
and transient responses
based on MPIM

 summation scheme

Q)

» order of discretization and differentiation

y

Discretization
s gy [FB, _EA A
S = ip

| D1ffer—ent1at1on |

® S

L. I3 T T
When USing MPIM, Un“ke the Undamped Summation scheme - z - -
systems, the order of discretize and e v
differentiation has no obvious effects on | Summartion scheme |

State space hased
differentiate-then-discretize

State space based
discretize-then-differentiate

reducing the inconsistency.

- the approximations of damping forces i
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Case studv

|
Target point : 2 10k
E. AL, p ! s f
E
IS
x,x,(t) st st | E 10
gW)=wme ™, g,(1)=p,e™ | g
1§
Items Values & Expressions I 310
y b ==de— MPIM discretize—then—differentiate
Rod length (L) 4m 5 | —&— MPIM differentiate—then—discretize
Youngs modulus (E) 2.1x%x 10” N/m' | —&— Newmark—[} discretize—then—differentiate |
. ‘I 1 1 1 1 1 1
Density (p) 7.8 x 10° kg/m* I %0 40 60 80 100 120 140 160
Cross sectional area (A) 6.25 x 1074 m? I DOF of the axially vibrating rod (At=3.0><10_5 s)
Damping factor () 0.05 I . -
« Efficiency: . :
o , : y Accuracy
¥ 2 I Dis-diff > diff-dis Diff-dis > dis-diff
Rod element length (/) L/N |
Ist-order natural frequency (wy) ‘/’E —I%zr |
2nd-order natural frequency (w2) \/'E %n |
Highest natural frequency (@pmax) \/—%_ 2‘;}?[ n :
Lowest time period (7 pin) ﬁi: I
Relaxation parameter y 'n—7lmT |
Relaxation parameter y y\r'u = I
N is changeable '
. . |
Free vibration |
egn egs . T
Initial conditions : x, =0,%x,={1,0,---,0} 1

10

Z. Ding, et al., Struct. Multidisc. Optim 2021, https://doi.org/10.1007/s00158-021-02937-9



Governing
equations

I

" MOR and

approximate
response
function

E

Differentiate

[

Solve direct
problem

J

!

Response
sensitivity

Challenge 3

» Model Order Reduction (MOR) Techniques

* Normal Mode based
v" High computational efficiency

Low approximation accuracy (iterative based method)
« Complex Mode based

v" High accuracy for highly damped systems

Computational inefficiency (obtain complex modes)

Which projection basis yields the best trade-off
between efficiency and accuracy on computing the
sensitivity of transient responses for viscoelastically
systems?

11



Multi-model (MM) Method

-- Combine several modal bases

I———————
i}

-=- iteratively seeking a better approximation

Improved Approximation Method (IAM)

|
"Tyuser = [Tarsk, Rf}lA

Normal Displacement
modes residuals

- K‘l(}oK_lF(s): e e e e e —— = =

|
-- Complex modes based | L oTF(5)g,
113 = Z ‘;29
1 i=l i
lems Values
Mass (1) ) M kg
Mass (w2} 25 kg

Raft {length-width-thickness)
Foudation {length-width-thickness)
Young's modulus (£)

Density (o)

1 20500020 planm
JOH M- ] GO0 mm
20 1t Nim?
7.8 % 108 L;__-."nr‘

DOFs: 7202 (+120)

g1(t) : BIOT

g2(t) : exponential

model
f(t)=5sin(0.5pit)

12



Computational Time (%)
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Case study

- Projection basis (static correction)
I:| Projection basis (other vectors)

- Dynamic response sensitivities

50 Vectors

52 Vectors

345

53 Vectors

0
MM MSER IAM FOM
Total Time: 243 s 28.7s 630.4 s 149429 5
10 T T -
(a) ——MM-y* ]
2 —f— MSER-y’ i
§ i [AMy
= u_’,.\-\n —— MM—W{ J
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Z. Ding, et al., Struct. Multidisc. Optim 2021, https://doi.org/10.1007/s00158-021-02937-9

1}

Conclusions :

FOM is very time-consuming, ROMs
significantly reduce the computational
time

Complex modes are less efficient

MSER vyields best trade-off, but is less
stable than MM

Recommend MM 3



TO Framework

8 Mean Strain Energy:
1
r(u(t).p.) = 50" (DK (o )u(t)

! & Volume Constraint: V., =05

Force Cycle: F(t) =1000sin(xt/t;), t; =0.05 and 0.02

/

Design domain and boundary condition Mesh Size: 80 X 40 14



Clamped Plate/2D

Mean Strain Energy:
r(u(t). o) =" (OK(p,)u(t)

Time Step Size: 0.001

0.00837
0.00960

82X
123.58s

=2.81h

87 X
400.30s

=9.67h

MPIM-dis-diff, t=0.03 MPIM-diff-dis, t=0.03 Newmark-dis-diff, t=0.03 15



Conclusions & Outlook

Conclusions:

1. Generalized Damping Model (GDM): a unified approach for modeling
viscoelastically damped systems.

2. The order of discretization and differentiation has no obvious effect on
calculating the transient responses of viscoelastic systems and the state-
space based discretize-then-differentiate method is recommended.

3. Multi-model (MM) is more suitable than other compared projection bases
for reducing the dimension of viscoelastic systems.

4. There is a great desire to improve the computational efficiency of TO. The
computational time can be significantly decreased by efficient sensitivity
analysis method.

1. Incorporating the MOR into the TO

2. Topology design of the viscoelastic damping material core for sandwich
structures under time dependent loadings and experimental validations.

16
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Reduction Basis I

3.1. MM method

The MM method is firstly derived from Takani-Sugeno fuzzy model which is used to represent nonlinear
dynamic systems [22]. Then, Blames [23] extended this approach to built a real-valued based projection
basis formulated from the corresponding viscoelastically damped system. The projection basis of the MM
method Tharas is a combination of static correction Xeor and several modal bases T

Tarar = [Xeor. Tpyoor . Ty, ] (22)

For each modal basis T, . it is constructed by the pseudo-normal mode solutions of the eigenvalue
problem

(K*(wp,) — AL (wp, M) @} (wp,) = 0. (23)

where wy,, is a priori chosen value related to the frequency range of interest and A7. @7 are the kth normal
eigensolutions when the priori imposed frequency is w,, . It is verified that good approximation results of
the dynamic response of highly damped structures could be obtained when the projection bases evaluated

at the minimum and the maximum frequency range of interest are included [20. 23]. If the computational

*  When w,,=0, MM is the same with MSE;
 Has not been applied in calculating the transient response sensitivities of
viscoelastically damped systems;

* Influenced by w,; and the involved modes at each w,; 23



Reduction Basis 11

3.2. MSER method
The MSER method aims to increase the accuracy of the approximation by iteratively seeking a better
projection basis. The projection basis Tyrsgpgr is enriched by adding displacement residuals R to the

Trrse:
Traser = [Tuse.Ry. (24)
The displacement residuals are derived from the static response to load residuals R%:
* * 2 * ¢
R}(w) = (K" (w) —w™) X} (w) — F, (25)

where X (w) is the approximation of the dynamic response calculated by using the projection basis Tarser

(the initial projection basis 15 Tarsgp and the robustness of the updated projection basis increases as the
displacement residuals are added). The displacement residuals are obtained by using of the static stiffness
matrix Ko = K* (w= 0) and the load residuals R%. which are given by

Rj(w) = Kj 'R} (w). (26)

£p = | dH 0 dllz . - Convergence
XK Xzl

where £ is the error estimate of the displacement residuals. * Influenced by initial projection

basis (Nm) and the tolerance &,

24



Reduction Basis 111

3.3. TAM

The projection basis Ty 4,7 is enriched by complex modes, which aims to reduce the error of the modal
truncation problem for viscoelastically damped systems. The projection matrix Ty 4,7 is built on a modified
MSE base and three perturbation bases (T, Ty and Tg) [21]

Tranm = [Tyuamse, Ti, Ta, T3], (28)

where the modal projection basis T yrarsg 1s defined as

Tunse = [Xeor Brl(wp, ), ®rlwy,)] (29)
L T L T < L TE/( o
i F(s)p; ©; F(s)p; —1 wj Fls)p; ~1 —1
T, =N D s S FIETE KR () Ta= Y T~ KTIGoK T R (s), (30
1 =1 (=50 : jz::l At o ; Aj0i ’ h o (30)

JdG(s)

s

where #; = ap? (2)\}-]7\1 + G(A;) + A ) w; and G(s) = Z G (5)Cy.

S:)\j

* Influenced by w, and the involved modes at each w,,

« Computational Time?

25



